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 Combinatorial optimization is an area of great importance since many of the real-world 
problems have discrete parameters which are part of the objective function to be optimized. 
Development of combinatorial optimization algorithms is guided by the empirical study of 
the candidate ideas and their performance over a wide range of settings or scenarios to 
infer general conclusions. Number of scenarios can be overwhelming, especially when 
modeling uncertainty in some of the problem’s parameters. Since the process is also 
iterative and many ideas and hypotheses may be tested, execution time of each experiment 
has an important role in the efficiency and successfulness. Structure of such experiments 
allows for significant execution time improvement by distributing the computation. We 
focus on the cloud computing as a cost-efficient solution in these circumstances. In this 
paper we present a system for validating and comparing stochastic combinatorial 
optimization algorithms. The system also deals with selection of the optimal settings for 
computational nodes and number of nodes in terms of performance-cost tradeoff. We 
present applications of the system on a new class of project scheduling problem. We show 
that we can optimize the selection over cloud service providers as one of the settings and, 
according to the model, it resulted in a substantial cost-savings while meeting the deadline. 
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1. Introduction  

This paper is an extension of work originally presented in 
conference MIPRO 2017 [1]. 

Combinatorial optimization (CO) is a research field with many 
important real-world applications. Scheduling [2], auctions [3], 
and vehicle routing [4] are just a few notable examples. 
Combinatorial optimization is a subfield of mathematical 
optimization. It deals with problems where optimal selection needs 
to be done from a discrete feasible set. Exhaustive search evaluates 
all possible solutions before selecting the best one which is 
infeasible for realistic problem sizes. There are special classes of 
CO problems that can be solved with polynomial-time algorithms 
such as shortest paths, flows, spanning trees, and matching. 
However, many interesting problems are NP-complete and for 
these problems, unless P=NP, there are no computationally 
efficient solving algorithms. For such problems, different search or 
metaheuristic algorithms are created in order to get as good as 
possible performance in a realistic amount of time. Design of such 

algorithms is an intrinsically empirical process, guided by the 
experiments while the ranking of different design choices, 
hyperparameter values and algorithms depends on the results from 
experimental runs, often performed on benchmark test sets.  

Each experiment consists of experiment units which denote the 
smallest indivisible executable unit. Experiment units are in the 
focus of this paper as they tend to be independent during the 
execution, which enables a high degree of parallelization. In 
deterministic CO problems all the parameters are deterministic. 
For them, each sampled instance of CO problem comprises an 
experimental unit. In stochastic and robust CO problems, some of 
the parameters are uncertain or unknown. In that case, each 
combination of sampled problem instance with its sampled 
parameter scenarios makes one experimental unit.  For that reason, 
the number of experimental units in stochastic and robust problems 
can grow exponentially in the number of uncertain parameters. 
Additionally, the aforementioned set of experimental units is 
increased in Cartesian product with other experimental factors, as 
shown in Figure 1. Such factors include hyperparameter values, 
used algorithm, and algorithm design choices. 
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Figure 1. Exponential growth of number of experimental units with added factors 

which constitute independent dimensions 

The experiment requires execution of all experimental units 
and empirical data must be recorded over those runs. This can be 
expensive operation, depending on the number of experimental 
units and the complexity of the underlying problem in each unit. 
However, as already mentioned, experimental units tend to be 
computationally independent and the process of experiment 
execution is inherently parallelizable over the units. In the current 
state-of-the-art combinatorial optimization, experimentation is 
mostly done on single computer. This was the case in stochastic 
variant of vehicle routing problem in [5] and project scheduling in 
[6]. There were applications where the problem was of such 
complexity that computer cluster had to be employed in order to 
make the algorithm practically usable. This was the case for fleet 
optimization in [7].  

In this paper we present an architecture of a system for 
distributing extensive computational experiments over the cloud 
that takes advantage of the independence between experimental 
units to achieve inexpensive scalability in the cloud. This 
architecture can be implemented as a standalone system or it can 
use some of the frameworks and systems described in section 2 if 
the amount of reuse and alignment of the blueprint with the 
implemented functionalities in those systems can be achieved. The 
architecture was designed in a way to reduce the amount of 
communication to a minimum level while still enabling efficient 
load balancing. We explain the distributed design of data storage 
for the experimental results. The distributed design reduces the 
communication overhead which is a problematic aspect for high-
performance computing (HPC) in the cloud. Storing rich 
experimental data is important for further analysis and also 
important as a mean of scientific scrutiny by enabling efficient 
sampling-based reproducibility. An optimization model is 
presented that describes the best choice of settings for running 
specific experiments. The model uses data from pilot runs which 
execute sampled subset of experiment units. Finally, the proposed 
architecture was applied on a specific problem of developing and 
validating algorithms for a new type of complex stochastic 
combinatorial optimization problem in project scheduling.  

The paper is organized as follows: in section 2 we present the 
idea of high-performance computing in the cloud as an alternative 
to in-house grids. Section 3 lists the related work. Section 4 
presents the general architecture of our system for distributed 

experimental runs. In section 5, a distributed design of the storage 
is described. Applications of the architecture on a real research 
problem are described in section 6. Section 7 drafts future research 
ideas and section 8 offers concluding remarks. 

2. High-performance computing in the cloud 
Distributed computing is unavoidable in high-performance 

computing (HPC) where job is divided between many available 
processors in order to significantly reduce the runtime with 
currently available hardware. Traditionally, dedicated in-house 
grids (super-computers) are used. They are difficult to setup, 
maintain and operate [8]. In this paper we shall deal with cloud 
computing as a flexible and cheap resource alternative that can be 
rented on demand instead of being owned the whole time – for a 
lower overall cost and a relatively small performance penalty. 
Studies have been conducted on the matter of using the cloud for 
high performance computing. In [9] and [10] authors concluded 
that there is a limit on a number of used computational nodes where 
coupled applications are competitive with in-house grids. Beyond 
that limit, overheads become overwhelming performance 
detractors. In [11] virtualization, latency and system noise are 
singled out as the biggest issues in comparison to dedicated 
supercomputers. They found that research groups with limited 
access to supercomputer resources and with varying demand might 
find cloud computing to be a beneficial choice. Latency is 
problematic due to used commodity equipment in most of the 
cloud infrastructure and network virtualization. Virtualization 
introduces performance penalties through network virtualization 
and other virtualization overheads while accessing physical 
resources. In [11], network virtualization was found to be the 
primary bottleneck of the cloud that increases latency, reduces 
bandwidth and interferes with processes. System noise affects the 
performance due to multi-tenancy which introduces resource 
sharing with virtual machines deployed on the same physical 
hardware. Service providers can manipulate the degree of multi-
tenancy, which enables greater profit by overallocating resources 
to the users. The problems with HPC in the cloud were reiterated 
in [12] where authors have put the focus on necessary reductions 
in communication overhead and virtualization. For the former, 
they propose the implementation of better load balancing, and 
using bare-metal containers for the latter. Comparative study in 
[13] confirmed raw performance superiority of in-house grids to 
Amazon’s Elastic Compute Cloud (EC2) cluster. However, 
waiting time in queue on HPC clusters plays a significant role 
when taking turnaround time into account . In such circumstances 
EC2 cluster could produce better turnaround times. The cost-
effectiveness of running HPC application was observed as 
dependable on raw performance and scalability. Cloud computing 
enables utilizing available monetary resources to rent practically 
as many as possible identical processing instances. This 
identicality of processing instances is desirable in running 
experiments as it sets all runs in the identical environment. This 
keeps most of the variance in measurements related to designed 
experimental factors. The effect of system noise on experiment 
results can be reduced using effective randomization in the job 
balancing. 

3. Related work 

In the last decade, with advent of Big Data, usage of cloud 
computing became all-pervasive. Related to scientific 
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applications, authors in [14] presented a reproducible genome 
sequencing task that was run in the cloud for a small cost with a 
near linear scalability. In [15], a new artificial intelligence 
algorithm for complex control tasks has been created. It features 
linear speedups with over a thousand workers on a public cloud 
service to cut down on total execution time in comparison to other 
algorithms. Authors in [16] have created distributed architecture 
for deep neural networks in the cloud for sensor fusion and 
inference based on the data from multitude of end devices. The 
communication cost was reduced by a factor of over 20x compared 
to the alternative. All of the aforementioned applications 
intentionally achieved low communication requirements between 
subtasks, hence avoiding or mitigating problems related to the 
communication overhead in cloud computing. Distributed 
execution engines have been created to simplify parallelization of 
computationally intensive tasks. Ray [17] is a python-based 
example of such system which enables computations. 

 Existing tools that provide support in design and comparison 
of optimization algorithms are listed in this paragraph. Comparing 
Continuous Optimizers (COCO) [18] is a platform for continuous 
optimization, hence it does not cover combinatorial optimization. 
Nevertheless, it has many of the features needed in a tool for our 
needs. It has a library of standard benchmark problems on which 
optimizers can be compared. Experiments can utilize Shared 
Memory Parallelism (SMP), but grid computing is not utilized. For 
that reason, big-scale execution in the cloud is not standard feature 
of that platform. ParadisEO [19] is a white-box C++ framework 
for reusable design of parallel and distributed metaheuristics. It has 
features and components helpful for creating new algorithms. The 
intent of this framework is to simplify the design of topologies 
within a single running system, i.e. a single optimizer that can be 
distributed. However, it does not specify the efficient way of 
executing distributed experiments. Java Evolutionary 
Computation Toolkit (ECJ) [20] is an option similar to ParadisEO. 
Multi-Objective Evolutionary Algorithm (MOEA) [21] Java-
based Framework deals with multi-objective optimization by 
combining the features of COCO, ParadisEO, and ECJ. We have 
pointed out that COCO covers only continuous optimizers, while 
other tools enable easier and faster algorithm design. The latter is 
achieved through reusability of common algorithmic components 
when the optimization problem and algorithm design have 
favorable features. These tools do not specify guidelines for 
distributing extensive computational experiments over the cloud. 

Performance of executing the experiment in the cloud is an 
important issue. Predictions can be used in scheduling as well as 
in finding optimal settings of computational nodes. The focus of 
[22] is on comparing public cloud providers using measurements 
on specific applications. These measurements can inform the 
processes of provider selection and performance prediction. 
Performance prediction using machine learning for improving the 
quality of system management decisions has been investigated in 
[23]. Authors in [24] used machine learning to predict the 
execution time of computational fluid dynamics applications in the 
cloud. These predictions were used in scheduling algorithms. A 
system for efficient performance prediction for large-scale 
analytics on EC2 cloud has been created in [25]. It utilizes optimal 
experimental design in order to minimize the resources in building  

the model. The system is used to find the optimal configuration in 
number of instances. Our architecture uses simple statistical model 
for performance prediction in order to calculate cost-optimal 
instance-type and number of necessary instances in order to satisfy 
desired probabilistic level of satisfying the deadline. In our case, 
settings also include the cloud provider, hence combining the 
intents of aforementioned works: performance prediction and 
optimization of node-selection that takes into account the cloud 
provider as well. 

4. Architecture 

The intended use-case is inherently parallelizable task. This 
architecture is designed in a way to use those favorable features of 
the task in order to achieve low communication between the 
computational nodes. In that way, latency is not an issue and there 
is only occasional communication where bandwidth plays the main 
role. Communication between the nodes is necessary for creating 
the computational nodes, sending instructions for job chunks (that 
is, batches) to them, and during migration of the final results. 
Instructions for job chunks contain small amount of information. 
Chunks are sized in a way to keep the nodes occupied for some 
time. There is a tradeoff between achieving good job balancing and 
reducing communication overheads in relation to the amount of 
computation done on the node. Computational nodes keep all 
generated and logged experimental data locally in their part of 
distributed database. The results, raw or processed, can be pooled 
periodically, upon finalization of the assigned experiment chunk 
or at the end of node’s part in the experiment. Aforementioned 
features make the problem suitable for cloud deployment as we can 
avoid communication-related detrimental effects on performance.  

Our pipeline architecture includes five general stages in the 
experimental process: 

1. Creation of experimental data, that is the data about 
experiment units in initial seed database. 

2. Creation of node images populated with all the necessary 
data and optimized code for executing the experiment units, 
logging and storing the results. 

3. Optimizing the settings of execution environment. Pilot runs 
are used on a small subset of experiment units for different settings 
of the nodes, including a service provider to inform the 
optimization procedure. 

4. Executing the experiment on pre-calculated number of 
identical nodes with settings selected in the previous stage.  

5. Collecting experimental data from computational nodes, 
conducting analysis and getting the results. 

In the rest of this section, we shall describe each of the stages 
in more details. All steps are enumerated according to their 
corresponding figures. 

4.1. Creation of the experimental data 

The data needed for running an experiment is created in the 
first phase, which is depicted in Figure 2. This means creating all 
the data that sufficiently describes experiment units so that they 
can be created and executed.  
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Figure 2. Preparing the seed database 

The first step in this stage is optional. It uses standard test set 
as a source for creating problem instances. For many well-
researched CO problems, such sets are shared within the 
community of the researchers to enable consistent ranking of 
algorithms. In case of new CO problems, maybe a standard test 
benchmark related to the problem can be found and used for 
creation of problem instances. Also, problem-instance generators 
are available for some problems and custom test set can be created. 
In this step, sampling and transformations of problem instances 
can be done to create our own set of problem instances that are 
going into an experiment. 

Actually used test set is created at this point. The “seed” 
database is created and populated with the metadata necessary for 
experiment execution. Also, it is filled with all the data about 
experiment units needed for execution and result logging. Part of 
the data can be in the form of external files if that is more 
appropriate, but they must be linked from a database. In order to 
enable distributed execution, a database (and external data) is 
distributed over the nodes in such a way that each node has its 
independent, unsynchronized version of a database. Each such 
database is initiated from a singular seed database. Horizontal 
fragmentation of writeable relations is employed as a mean of data 
distribution over the nodes. Details of a database are given in 
section 5. 

4.2. Creation of node images 

One or more virtual machine (VM) images need to be created 
at this stage (shown in Figure 3). The exact number depends on the 
requirements in a phase of pilot runs. Each image contains a copy 
of a seed database and all the necessary code for running the 
experiment chunks on the node. Executable code is tuned to the 
intended hardware. After that, image is migrated to the cloud 
service from where it can be easily deployed for creation of the 
computational nodes. 

4.3. Optimizing the execution environment 

It is hard to know exactly in advance what settings of the 
computational node are efficient. For that reason we need an 
optimization phase of an experiment with regards to the settings of 
the experiment run. This is a stochastic combinatorial optimization 
problem as well and it can be stated as a problem of minimizing 
the monetary cost of renting cloud instances under a constraint of  

 

 
Figure 3. Creating the image for virtual machines in computational nodes 

achieving desired probability of finishing before the selected 
deadline. The problem can be formulated and expressed as: 

  min E ∑x∈S Cx(nx)    (1) 

with the constraints: 

        ∑x∈S δx=1,    (2) 

  P{Tx(nx)≤D}≥δx⋅p, ∀x∈S,    (3) 

         δx∈{0,1}, ∀x∈S,           (4) 

     nx∈N0, ∀x∈S.    (5) 

In the above formulation E is the expectation operator and P is 
a probability measure of the set. The above problem (1)-(5) has 
several parameters with values known prior to optimization: D is a 
desired deadline, S is a set of node-type options, and p is a desired 
probability of achieving the deadline. Also, Cx is a random cost of 
running the experiment on nx instances of node-type x. The cost is 
random as it depends on the utilization durations of nx nodes. Tx is 
a random experiment finish time when running it on nx instances 
of node-type x. Decision variables are nx and δx where nx represents 
a number of instances of type x (5), and δx represents exclusive 
choice between the node-types (4). Randomness in this problem 
originates from the noise in execution due to hardware reasons and 
uncertainty in computational requirements of each experiment 
unit. That randomness is reflected in Cx and Tx. These functions 
can be created using statistical analysis or machine learning on the 
data from pilot runs. The objective function (1) is the expected 
value of total cost of the experiment. It sums the costs across all 
possible node-types but only one of those costs is going to be non-
zero. The first constraint (2) ensures that only one node-type is 
selected. A set of chance-constraints (3) ensures that for selected 
node-type x a number nx of nodes is selected so as to achieve a 
desired level of safety. All zero-valued δx make these constraints 
trivially satisfiable for all non-selected node-types x. For the 
selected node-type, a constraint enforces that a probability of 
finishing before the deadline must not be lower than the prescribed 
p.  

We propose to make a parameter search over a set of node 
settings by running a simple and small experiment (using only a 
subset of experiment units) on each setting in S. A set of options 
should be small in order to reduce the cost of doing the pilot runs. 
That set can be composed by a careful pre-selection based on 
available data from previous general analyses such as [22] and 
based on analysis of the code for experiment execution as in [26].  
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The settings with the most impact are the selected cloud-
service provider and cloud-instance type. The latter can be further 
customized across some set of subsettings, but usually the types 
are predefined less flexibly. The most important subsettings 
pertain to hardware components: CPU, disk size, RAM, etc. Pilot 
runs are identical to executing the experiment described in the 
following subsection. The difference from the latter is in the scale; 
in pilot runs just one experimental node per different setting is used 
, while many experimental nodes with identical settings are used 
during the experimental run. Collected data are analyzed by a 
procedure described in subsection 4.5. Based on the collected data 
and optimization model, economically most efficient node setting 
is chosen for the full experiment. Also, for that choice we get an 
estimate of the total experiment run time and cost by taking the 
summary statistics of Tx and Cx. Based on a desired due date, we 
infer the necessary number of computational instances N. N is the 
value of only non-zero nx in optimal solution of the the 
optimization model. 

4.4. Executing the experiment 

 
Figure 4. Execution of the experiment 

The experiment is executed by distributing chunks across 
computational nodes (Figure 4). Experiment spawner is a script 
that balances the load between instantiated computational nodes. 
The experiment is partitioned into disjoint experimental chunks. 
Each chunk is a set of experiment units to be executed on a single 
computational instance.  

1. Experiment spawner creates N cloud nodes and sends over 
network the parameters that define their workload chunks. These 
parameters constitute a small amount of information. Each 
experimental node runs a chunk runner which processes its 
assigned workload. Each runner, depending on the type of a 
problem, can instantiate additional computational nodes to form a 
mini-grid using Message Passing Interface (MPI). That is done if 

some of the algorithms require such execution architecture by 
design. SMP can be switched on by the parameters sent from the 
experiment spawner. Each node sets triggers for utilization alarms 
at the performance supervisor. Triggers improve the efficiency of 
a system by notifying the subscribers of different events. This 
information can be used for better, more prompt load balancing 
and it can reduce the renting costs. 

2. At the end of processing a chunk, a computational node 
triggers supervisor’s alarm when it can get another chunk to 
execute. When the node finishes with processing, it migrates its 
results to a permanent cloud storage and it gets terminated. 

4.5. Result analysis 

 
Figure 5. Analysis of experimental results 

Users are notified by supervisor's alarm about the finalized 
jobs. A procedure is subscribed to notifications and reacts to them 
as shown in Figure 5. At first, the data is migrated from a 
computational node to some storage, locally or in the cloud. If the 
node has no more jobs to process, it is terminated to reduce costs. 
Analysis is done iteratively over the partial data as they pool to the 
storage. At the end of the process, with all the experimental results 
available, concluding results are created. 

5. The database 

The main objective of our system is to produce detailed 
experimental data as fast as possible. We have decided to store all 
the data into a database as it simplifies manipulations with 
overwhelming amounts of data.  

It is assumed that running computational experiments is 
expensive both temporally and monetary. Storage, on the other 
hand, is much cheaper on both accounts. For that reason, as much 
data as possible should be stored for future analyses to avoid 
experiment re-runs. 

Practicing scrutiny is important in science in order to prune 
mistakes and misconduct. Replication studies simply repeat 
experiments to check if the results match. In computer science, this 
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can be done by sampled replications that repeat small sampled set 
of experiment units. In each repetition, the same settings for 
pseudo-random number generators (PRNG), algorithms and 
problem instances should be used to create near-identical 
conditions as with the initial experiment. The results of replication 
study must match the stored values for everything except the 
execution time which includes incontrollable system noise. This is 
more efficient than replications of physical experiments where the 
exact conditions cannot be repeated and results should only 
statistically match. In the latter case, a greater number, if not all, of 
experimental units needs to be repeated in order to make 
conclusions. Also, executing experiment units in computational 
experiments is often cheaper than for physical experiments. The 
probability of non-matching results gets exponentially smaller 
with the size of randomly generated sample for replication. 

5.1. Design 

As described in section 2, communication overheads are 
serious performance detractors to scalability in the cloud in 
comparison to the in-house grids. Grids have tight interconnection 
and synchronization. For that reason, we have decided to minimize 
communication frequency between the cloud instances. All 
instances have their own database for storing results that springs 
from the initial seed database which is copied to all instances 
during creation of the node image as described in subsection 4.2. 
Seed database holds metadata and identification/replication data. 
The former defines all necessary structures to store the experiment 
data. The latter are the basic data necessary for identification of 
experiment units. Such data include the shared information for all 
instances of CO problems, used optimization algorithms, PRNG 
types and uncertainty scenarios in the case of stochastic or robust 
CO. Hence, all the data that define and describe experiment units 
(Figure 1) are present in a seed database. 

Each node is created with a separate copy of a seed database. 
These copies make up a distributed database. The writeable 
relations, which record the experimental run data, are horizontally 
fragmented. Horizontal fragmentation keeps table schemas and 
distributes table rows across the nodes, as depicted in Figure 6. 

 
Figure 6. An illustrative example of horizontal fragmentation 

During the experiment execution, each node saves two types of 
data: identification/replication data, and performance data. The 
former describe the settings of an executed experiment unit. This 
consists of the settings of the used optimization algorithm, PRNGs 
and other components that hold the key to replicating the execution 
of the experimental unit during replication studies. Performance 
data track decisions made during the execution and measurements 

of their effects. Quantitatively they make up the majority of 
generated and stored data, and the final conclusions are based on 
them.  

Distributed data uses the identification scheme that combines 
together node-specific identification/replication information with 
shared information that originated from a seed database. That 
scheme makes data aggregation from all chunks unambiguous. 

6. Application 

The primary motivation for creating previously described 
architecture was a practical problem. As a result of different branch 
of research, we have worked with the new type of stochastic 
project scheduling problem, Cost-based Flexible Stochastic 
Resource Constrained Project Scheduling Problem (CBF-
SRCPSP), defined in [27]. This problem deals with proactive-
reactive project scheduling which makes the synchronization 
between project collaborators easier. It uses an agreed upon 
baseline schedule that stores the time-agreements for starting times 
of different project activities. Deviations of real start times from 
these agreements are penalized for inflexible, change-sensitive 
activities. The additional element in this model is that the changes 
to the baseline schedule can be profitable if they can be undertaken 
sufficiently far into the future. This extension to the features of 
baseline schedule makes the solution space much more complex 
due to the aforementioned proactive rescheduling operations. 
Searching the solution space becomes more time-consuming, 
though it pays off. We were lead empirically through the design 
and creation of optimization algorithms for CBF-SRCPSP.  

The experimental set was created based on the standard Project 
Scheduling Problem Library (PSPLIB) set of instances for 
deterministic resource constrained project scheduling problems 
[28]. Cluster sampling was used to select sets of template instances 
from J30, J60, and J120 problem sets. The latter consist of projects 
that have 30, 60, and 120 project activities, respectively. The 
templates were expanded to fit CBF-SRCPSP model by modeling 
the stochasticity in activity durations with discretized beta 
distributions with a combination of selected and randomly 
generated distribution parameters. Additional parameters for each 
activity were randomly generated, according to the selected 
triangular distributions. After this procedure we ended up with 300 
instances of each size which sprang up from template instances 
extended to fit the new model. The templates were instantiated 
according to the two experimental factors regarding to the project 
deadline: tightness of the deadline and bonus for early-finishing 
the project. For each instance, we generated 1000 activity duration 
scenarios from the discretized beta distributions. Activity 
durations were the only source of uncertainty. All of this data: 
project instances and uncertainty scenarios per each project were 
fed into a seed database. The used database was sqlite3 as it fit the 
needs of our experiment. Its simplicity trades-off well with its 
shortcomings in comparison to the more elaborate database 
management systems. 

The seed database was also populated with the metadata about 
used PRNGs and CO algorithms. We have used two PRNGs: 
Mersenne twister with careful parameterization [29] and Threefry 
[30]. Several search algorithms were developed during the 
algorithm design. We had at our disposal implementations of 
optimization algorithms from the CO literature that were already 
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available in the used simulation library [26]. The final experiment 
included one benchmark CO algorithm from the literature and two 
selected newly-developed algorithms that were hypothesized to 
significantly outperform the benchmark. However, the analysis 
necessary for proving the hypothesis necessitated sufficient 
number of samples. The newly-developed algorithms were 
computationally expensive due to a search in more complex 
solution space than the benchmark. 

The node images used Linux with gcc and necessary libraries. 
New algorithms were developed upon the C++ simulation library 
from [26]. This means that the most computationally intense parts, 
namely simulation-based experimentation and database logging 
were coded in C++ for better performance. The mini-grids were 
not used, since all the algorithms used only shared memory 
parallelization with two threads using OpenMP to speed up the 
search. This choice was based on the experiment in [26] regarding 
the parallel efficiency of the used simulation library. That also 
determined the number of computational cores per instance. 

The total experiment was run on two occasions. The second 
experiment was done due to improvements to the developed 
algorithms and the results from the second study were used in the 
final experiment report. Here we shall cover both experiment runs 
as they utilized different experimental choices. In both cases, the 
raw results were downloaded locally using the python script. 
Statistical language R was used for results analysis. RSQLite R 
package was used to query the databases for the relevant data and 
to gather them together from all the sources. 

6.1. The first experimental run 

During the first experiment run we have selected Amazon Web 
Services (AWS) [31] as a service provider. Therefore, we did not 
use service provider as the experimental factor in pilot runs during 
the selection of the ideal instance type. We have used EC2 for 
computations, and have opted, after pilot runs, for c3.large 
instances with 2 dedicated physical cores of Intel Xeon E5-2680 
v2 (Ivy Bridge) processors and 3.75 GiB of RAM. Simple Storage 
Service (S3) was used to store experimental results. The 
combination of CloudWatch (CW) and Simple Notification 
Service (SNS) was used for supervision and utilization 
notifications. Experiment spawner was coded in python, using the 
boto API [32] for accessing AWS and paramiko module [33] for 
controlling SSH2 connections.  

Experiment consisted of 1.6 million experiment units. 
Experiment chunking was done across the problem instances. The 
chunk runner accepts parameters that describe chunk boundaries. 
These parameters are just several bytes in size and it is all the 
information needed for initiating the experiment execution on a 
computational instance. The total computational workload of the 
experiment was estimated based on running small sample of 
experiment units during the pilot run. It was estimated that the total 
workload is three and a half months of computational labor on the 
available hardware. The deadline was set to 7 days which we 
wanted to achieve with 90% probability. We calculated the 
necessary number of computational instances to satisfy this 
requirement.  This resulted in using up to 26 cloud instances and 
reducing the total duration to 6 days. The database for each 
instance was migrated to S3 at the end of chunk execution and it 

awaited further analysis there. The cost of the first experiment was 
445$. 

6.2.  The second experimental run 

The second experiment was run on improved algorithms. The 
number of the most computationally expensive units was 
significantly increased, resulting in the total of 2.1 million 
experimental units. The optimization stage was used to select the 
node-type, also taking into account the service provider. We have 
used prior knowledge of the characteristics of our experiment 
runner - low working memory consumption (under 500MB) and 
high CPU utilization - to narrow down a range of instances. We 
tested the instances with 2 processors and as close as possible to 
2GiB of memory. Market research was used to select the small set 
of service providers: Online Virtual Hosting (OVH), AWS (due to 
the use in the first experiment), and Linode. The selected instance-
types are listed in Table 1. 
Table 1. Members of alternative set S for optimization of execution environment 

 OVH Amazon EC2 Linode 

instance-type 

 
2vCores@ 

2.4GHz 
8GB RAM 

c3.large 
2vCores@ 

2.8GHz 
3.75GB RAM 

 
2vCores@ 

2.5GHz 
4GB RAM 

price 13.49$ 
(monthly) 

0.105 
$(hourly) 20$ (monthly) 

 

The identical pilot run was used on all instance-types. Seven 
different types of experiment units were sampled into the pilot’s 
unit set. The price of pilot runs in the optimization stage was 1.1$. 
The measurements were used to model execution durations for 
each combination of instance-type x and unit type u as Gaussian 
random variables dx,u. Then, the total experiment duration for each 
instance-type is Gaussian random variable where wu is the number 
of units of type u in our experiment. We approximated Tx by 
assuming that the total work modeled by dx is simply equally 
divided among nx computational instances.  

It was estimated with the probability of 90% for the fastest 
option that the total workload is just above three years. The ranking 
and the necessary number of instances were calculated in order to 
satisfy the selected deadline of 30 days with the probability of 
90%. The deadline was set to 30 days to take advantage of the 
monthly pricing. Figure 7 shows the optimal expected total costs 
for each option in Table 1. The results in Figure 7 were 
anonymized due to the legal concerns. Based on the available data, 
we have selected the C3 type instance as the most efficient with 
the estimated cost just below 500$. The experiment was run and it 
finished after 23 days of executing. 

7. Future work 

Possible future research ideas include improvement to the 
robustness of the total workload estimator. In our application, 
different simplifying assumptions were made and the error of their 
approximation effect should be investigated. 

In order to reduce costs of the research community, general 
data about computational experiments (duration and prices) could 
be shared online with the public. This data can be useful for 
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creating promising and efficient alternative sets for optimizing the 
execution environment.   

 
Figure 7 Estimates of total expected cost for anonymized permutation of options 

from Table 1  

An automated tool for the composition of alternative sets could be 
utilized based on the experiment requirements. There is a potential 
in using pilot run on just one carefully selected instance type and 
then utilizing machine learning to find the best option and the 
number of necessary instances N for the desired target duration and 
the probability of achieving it. More advanced notions of risk and 
chance constraints can be used to account for the uncertainty in 
estimations and its economic effect. That can inform budget 
planning and the project management that undertakes the 
experiment.  

Many parts of the architecture presented in section 4 are 
abstracted from the details of the particular experiments and can 
be reused in different settings. Component-based framework for 
general experimenting can be created. In that way, reuse of existing 
components can be increased and a code generator for repetitive 
parts can speed up the development, especially if the user does 
most of the manual process through an intuitive graphical user 
interface. Cloud costs can be reduced further by better node 
tracking and possibly using the cheaper spot instances for non-
critical computations, especially during the algorithm design, 
prototyping and various pilot runs. The performance penalty in 
case of using such instances should be investigated in order to 
drive recommendations for configurations that utilize them. 

8. Conclusion 

Cloud computing is still not a simple and clear choice for high 
performance computing due to the issues pointed out in [11]: 
communication overhead, virtualization and system noise. The 
efficiency of cloud depends greatly on the specifics of the problem 
that we are trying to solve. 

We have presented a system for distributing combinatorial 
optimization experiments over the cloud. Doing computational 
experiments for validation and guiding the design of CO 
algorithms has a specific property that it can be parallelized across 
experimental units that tend to be independent. This allows for low 
coupling between the simultaneous tasks and circumvents the 
issues related to the communication overhead.  

Our system records rich data about the experimental runs in 
order to reduce the need for re-runs of experiments which may be 

computationally and monetarily expensive. In order to keep 
communication overhead to the minimum, distributed database 
with horizontal fragmentation was used. Each cloud node 
populates only the data related to its assigned disjoint experiment 
chunk. The unambiguity of the data across the system is, hence, 
kept without additional effort. When the tested algorithms use 
distributed computations in mini-grids, they should keep the grid 
size within the limits of recent studies, such as given in [11], to get 
the best performance benefits. It is expected that additional tuning 
and advances in cloud computing technology will increase the 
limits found by these studies. 

We described two successful applications of our proposed 
system on the newly developed algorithms for complex stochastic 
combinatorial optimization problem, CBF-SRCPSP. Initial 
estimated sequential duration of several months to several years 
was reduced to under a month (the first experiment under a week) 
by distributing the execution. The optimization stage of our 
architecture finds the best settings for the execution environment. 
This enables the selection of the best instance-type across different 
cloud-service providers. In our case, that significantly reduced the 
cost of running the experiment. 
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